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Abstract

The effect of local geometric imperfections on the buckling and postbuckling of shear deformable laminated cy-
lindrical shells subjected to combined axial compression and uniform temperature loading is investigated. Two cases of
compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are
considered. The governing equations are based on Reddy’s higher order shear deformation shell theory with a von
Karman-Donnell-type of kinematic nonlinearity and including thermal effects. The material properties are assumed to
be independent of the temperature. The nonlinear prebuckling deformations and initial geometric imperfections of the
shell are both taken into account. A boundary layer theory of shell buckling is extended to the case of shear deformable
cross-ply laminated cylindrical shells and a singular perturbation technique is employed to determine the buckling loads
and postbuckling equilibrium paths. The numerical illustrations concern the compressive or thermal postbuckling
behavior of moderately thick, cross-ply laminated cylindrical shells with local or modal geometric imperfections. The
results show that, for the same value of amplitude, the local geometric imperfection has a small effect on the buckling
load as well as postubuckling response of the shell than a modal imperfection does.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The postbuckling response of multilayered composite cylindrical shells subjected to combined axial and
thermal loads is of current interest to engineers engaged in the aerospace, nuclear, petrochemical and other
engineering industries. These cylindrical shells may have significant and unavoidable initial geometric
imperfections. Although imperfection distributions are likely to random in the nature, it is often observed
that local dimples or modal imperfections are presented in the shell structure. Thus, understanding the
effect of initial geometric imperfections on the postbuckling behavior of cylindrical shells is an important
consideration in the design of these shells.

* Corresponding author.
E-mail address: hsshen@mail.sjtu.edu.cn (H.-S. Shen).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00351-7


mail to: hsshen@mail.sjtu.edu.cn

4526 H.-S. Shen, Q.S. Li | International Journal of Solids and Structures 39 (2002) 4525-4542

Many postbuckling studies, based on classical shell theory, of composite laminated thin cylindrical shells
subjected to mechanical or thermal loading are available in the literature (see for example Sheinman et al.,
1983; Shen, 1997b). Relatively few studies involving the application of shear deformation shell theory to
postbuckling analysis can be found in Tu and Chia (1988), Reddy and Savoia (1992), Eslami et al. (1998),
and Eslami and Shariyat (1999). In the foregoing studies the initial geometric imperfection was assumed to
be a modal shaped. However, studies involving the effect of local geometric imperfection on the buckling of
cylindrical shells are limited in number. Among those, Hutchinson et al. (1971) gave a number of theoretical
and experimental results for the compressive buckling of axially loaded cylindrical shells with a cosine
dimple imperfection. Amazigo and Budiansky (1972) gave an imperfection sensitivity analysis of axially
compressed cylindrical shells with localized axisymmetric imperfections using Koiter’s general theory. The
effect of large diamond shaped dimples on the buckling of cylindrical shells under axial compression was
investigated experimentally by Krishnakumar and Forster (1991). The influence of a localized defect in the
axial direction on the buckling of a long cylindrical shell under axial compression was analyzed by Jamal
et al. (1999). In these studies only isotropic cylindrical thin shells were performed and the prebuckling stress
state was assumed to be that corresponding to a pure membrane state. Recently, Shen (1999) gave a full
nonlinear postbuckling analysis of composite laminated cylindrical shells with local geometric imperfec-
tions subjected to axial and thermal loads. It should be noted that in Shen (1999) the shell is considered as
being relatively thin and therefore the transverse shear deformation is usually not accounted for.

It has been shown in Shen (1997b) that in shell thermal buckling as well as in shell compressive buckling,
there is a boundary layer phenomenon where prebuckling and buckling displacement vary rapidly. This
phenomenon was previously reported by Bushnell and Smith (1971). Shen and Chen (1988, 1990) suggested
a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations,
large deflections in the postbuckling range, and initial geometric imperfections of the shell. Based on this
theory, the postbuckling analyses for perfect and imperfect, unstiffened and stiffened, laminated cylindrical
shells under combined mechanical and thermal loads have been performed by Shen (1997a—c, 1998, 1999).
The present study extends the previous work to the case of moderately thick laminated cylindrical shells
with local geometric imperfections under combined axial and thermal loads.

In the present study, the temperature field considered is assumed to be a uniform distribution over the
shell surface and through the shell thickness. The material properties are assumed to be independent of the
temperature. The governing equations are based on Reddy’s higher order shear deformation shell theory
with a von Kdrman-Donnell-type of kinematic nonlinearity and including thermal effects. The nonlinear
prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A
singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium
paths. The numerical illustrations show the full nonlinear response of shear deformable cross-ply laminated
cylindrical shells with local geometric imperfections under two different kinds of loading conditions.

2. Theoretical development

Consider a cylindrical shell with mean radius R, length L and thickness ¢, which consists of N plies,
subjected to two loads combined out of axial compression Py and a uniform temperature rise 7. The shell is
referred to a coordinate system (X, Y, Z), in which X and Y are in the axial and circumferential directions of
the shell and Z is in the direction of the inward normal to the middle surface, and the corresponding
displacement designated by U, ¥ and W. ¥, and ¥, are the rotations of normals to the middle surface with
respect to the Y- and X-axes, respectively. The shell is assumed to be relatively thick, geometrically im-
perfect. Denoting the initial geometric imperfection by W (X, Y), let W(X,Y) be the additional deflection
and F(X,Y) be the stress function for the stress resultants defined by N, = F,,, N, = F,,, and N, = —F ,,,,
where a comma denotes partial differentiation with respect to the corresponding coordinates.
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Reddy and Liu (1985) developed a simple higher order shear deformation shell theory, in which the
transverse shear strains are assumed to be parabolically distributed across the shell thickness and which
contains the same dependent unknowns as in the first order shear deformation theory. Based on Reddy’s
higher order shear deformation theory with von Karman-Donnell-type kinematic relations and including
thermal effects, governing differential equations are derived and can be expressed in terms of a stress
function F, two rotations ¥, and ¥, and a transverse displacement W, along with the initial geometric
imperfection W . For moderately thick cross-ply laminated cylindrical shells, they are

Lu(W) = Lio(¥) = Lis(P,) + Lua(F) = Lis(N') = Lio(M) — %f — LW+ W F) (1)

La(F) + Loo(V) + Ln(P,) = Lo (W) = Los(N) + %WW =- %Z(W + 27 W) )

Lyy(W) + Ln(P) = Ls(Py) + Laa(F) = Las(N') = Lss(S) = 0 (3)

Z4l (W) — 242(?)5) + 243(7 ) + L44(F) Z4S(NT) — Z46(§T) =0 (4)
where

Ls(V") = (B s Bio s ) (V1) + 2oy (V1) + (B s+ B s ) ()
W) = s (77) + 250m5 () + s (7))
2

W) = (i + i ) (V1) ~ i emy (V0) + (s + Ay ) (W)

(
(
(
La(W) :% :(BTI —%ETI)NH (B;l —%E;)NT} aaY[(B& 34 Eg(,)N (5)
( 54)
(

~T a * 4 % v a * 4 * v * 4 * _T_
N ) = 67 (366 ﬁEéé)Nm} +6_Y |:<BIZ - ¥E12>Nx + (Bzz - ﬁEzz)Ny

Lu(5") =5 (55) + 27 ()

and all other linear operators L,-j( ) and nonlinear operator L( ) are defined as in Shen (2001).

It is noted that these shell equations show thermal coupling as well as the interaction of stretching and
bending.

Two loading cases are considered. In the first case, a uniform temperature rise is complemented by
increasing mechanical compressive edge loading. In the second case, mechanical compressive loading is
kept at a constant prebuckling level and the ends of the shell are assumed to be restrained against expansion
longitudinally while the uniform temperature is increased steadily. As a result, the boundary conditions are
X =+L/2:

W=¥,6 =0, M,=P,=0 (simply supported) (6a)
W=¥,=%,=0 (clamped) (6b)
2nR
/ N.dY + Py =0 (for compressive buckling problem) (6¢)
0
U =0 (for thermal buckling problem) (6d)
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where M, is the bending moment and P, is higher order moment as defined in Reddy and Liu (1985). Also,
we have the closed (or periodicity) condition

2nR
/ o dy =0 (7a)
0

oY
mRF O*F . .\ 0%, . 4 \o¥, 4 [ _ o&w _ W
/0 23?2 + 4,75 6Y2 (321 32 E21> 6X (Bzz - ﬁEn) G—Y} BEY?) (EZI Ba TEnayy E )

W 1<6W>2 oW oW’

or

R 2\ oY oY oYy
Because of Egs. (7a) and (7b), the in-plane boundary condition ¥ = 0 (at X = +L/2) is not needed in
Eqgs. (6a)—(6d).
The average end shortening relationship is

2nR +L/2
T wm ) [, e
L 2nRL
w2l CRF 0 COF (0 4 N\ (.. 4\ 3P,
:_27rRL el Tl e G )
W

LOW W LW\ QW o
~35 ( +E >—2<> ~ 5% S~ (4LND +4LN) ) | dxdy 8)

— (4N + 43,1, )] dy =0 (7b)

naxz TPy X X X
In the above equations and what follows, [4;], [B}], [D}], [E;], [F;] and [H}] (i, j = 1, 2, 6) are reduced
stiffness matrices, defined by
A'=A"'", B=-A"'B, DD=D-BA'B, EE=—-A'E, FF=F—-EA'B, HH=H-EA'E
9)
where 4;;, B;; etc., are the shell stiffnesses, defined in the standard way (see Reddy and Liu, 1985).
The thermal forces, moments and higher order moments caused by temperature rise T, are defined by

N)% M?— P)% N 0 A,
N P =Y / (1,2,2%)| 4, | Tz (10a)
~ 7 B =1t A,
N, M, P, w1k
and i
s1 (7] ,[7
=T —T —T
S, | =M, |- i P, (10b)
d 7 B
| Zxy | xy xy |
where
[ 4, | Qll le Qlé 11 s> o
4, | =- Qi On O s? c? {0‘22] (11)
[ Ay | O Oy Ol [2cs —2cs

and o;; and oy are the thermal expansion coefficients measured in the fiber and transverse directions, re-
spectively, and Q,; are the transformed elastic constants, defined in the standard way (see Shen, 1999).

From Eqs (10a), (10b) and (11) the thermal force Nw
moments P are all zero valued, and Nx and Ny are both constants, so that le(]vr) = ZZS(NT) =
Lys(N')=Lis(N') =L1s(M') = L(S') = Lss(S') = 0.

the thermal moments M, and the higher order
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Fig. 1. A cylindrical shell with a local geometric imperfection.

A local asymmetric imperfection is to be assumed as (see Fig. 1)
X Y

roul Rl ey (12)

C G

where 4,, is a small parameter characterizing the amplitude of the initial imperfection and C; and C,

characterize the half-width of the region of the dimple. Thus, local means here that the initial deflection
decay exponentially in both X- and Y-directions.

W' (X,Y) =A,exp <—

3. Analytical method and asymptotic solutions

Having developed the theory, we now try to solve Egs. (1)—(4) with boundary conditions (6). Before
proceeding, it is convenient first to define the following dimensionless quantities (with y;; in Egs. (20), (22)
and (23) below are defined as in Shen (2001))

x=nX/L, y=Y/R, B=L/nR, Z=1I*/Rt, &= (xR/1*)[D;\Did;ds]"*
(W) = o(W, W)/ [0\ D Ap] ", F = &F/ [}, D3]"?
(%0 ¥,) = & (e, V) (L) [D}y Doy Az, )
Yia = [Dzz/DT1]1/27 You = [Afl/A§2}l/2v Vs = —Aj, /Ay
(y31,741) = (L*/7%) (Ass — 8Dss /1> + 16Fss/1*,  Auy — 8Dy /1> + 16Fy /1*) | Dj, (13)
(risvm2) = (41,47 )R [0 [0 D] ™, (rers7c2) = (L/mC1,RIC)
(My, P,) = & (M., 4P, /32) 1> /7 D5, [} Din iy Asn] ) (s 72) = (1,10%) o Ty
Gy = Po/Ar[D; Do A3] 0, = (4/1)/(2/R) (D} Do} ]
2= Py[3(1 = vipvn)] /202 [En B2, 85 = (A:/L)[3(1 — vizvar)]?/(¢/R)
and let the thermal expansion coefficients for each ply be
011 = Ao, Oz = A0l (14)

where ¢ is an arbitrary reference value, and let

N 1
(47.47) = 7; /k (4, 4,), dZ (15)
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The nonlinear Egs. (1)—(4) may then be written in dimensionless form as

82L11(W) —eLp (V) — 8L13(1Py) +&p1aLia(F) — 71aF e = V14ﬁ2L(W + W F)
Lot (F) 4 724Laa (W) + 12aLos (W) — €934 Loa(W) + 934 W oo = —Sppu LW + 207, W)
eLst (W) + Lp(V) — Lss(¥)) + y14Lsa(F) = 0

eLat(W) — Lap(¥y) + Las(¥)) + 14Laa(F) =0

where
64 4 64
Ly( )= Moz 7T 29,8 oy 2+V114ﬁ4a y
o 0
Lp( )= Vlzoa—x3+ V122BZW
o 63
Lis( )= V”lﬁ@xzﬁ /13%33
64 64 64
Lis( )= T4 33 + 29108 o 5+ 7144ﬂ4
o o |
Lu( )= o Pl 29,08 0y =5a5 1 Vb ot
63 63
Ln( )= 12053 + 7mh’ Rrr
o 63
L( ) = /231ﬁa 23y +V233/3%
ot a 64
Lu( ) = 72406 N /242ﬁ P 26 >+ V244ﬁ4
0 o o
Ly( )= “/31&"‘ 7310@‘*‘ Vmﬁzax—ayz
o? 0?
Ln( ) =73 — V320@ - “/322526—yZ
62
Ly( ) = 7331ﬁm
Ly( ) = Lao( )
0 o 63
Lu( )= V“ﬁ@_y—’_ V“lﬁ@xz@ + /41333
Lip( ) =La( )
e L

Ls( ) = — V430@ — Vam 67)/2
Laa( ) =Las( )

o o o> o o
L()=——-"2—F—+—=—
Ox? 0y? OxOy Ox0dy  0y?* Ox?
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Because of the definition of ¢ given in Eq. (13), for most of the composite materials [DT1D§2AT1A§2]1/ ‘=
(0.2 — 0.3)¢, hence when Z = (L*/Rt) > 2.96, we have ¢ < 1. In particular, for isotropic cylindrical shells, we
have & = n?/Zzv/12, where Z = (L2/R1)[1 — v?]'/* is the Batdorf shell parameter, which should be greater
than 2.85 in the case of classical linear buckling analysis (Batdorf, 1947). In practice, the shell structure will
have Z > 10, so that we always have ¢ < 1. When ¢ < 1, Egs. (16)—(19) are equations of the boundary layer
type, from which nonlinear prebuckling deformations, large deflections in the postbuckling range and
initial geometric imperfections of the shell can be considered simultaneously.

The boundary conditions of Egs. (6a)-(6d) become

x =+mn/2:
w=Y¥,=0, M, =P, =0 (simply supported) (21a)
W=%=%,=0 (clamped) (21b)
1 , O°F . .
7 [3 dy + 22,6 =0 (for compressive buckling problem) (21¢)
s
0, =0 (for thermal buckling problem) (21d)

and the closed condition becomes
o*F , 0°F oY, o*w ) 62
; S 758’ B3 + V24| V220 = o + /522ﬁ T VT vy + /622ﬁ

1 ow ow ow* )
+ vV — V24ﬁ ( o > /24/52 oy + (2 — VsVn)’LTH] dy=0 (22)

The unit end-shortening relationship becomes

2n +7/2 azF azF GY’ 6'{’
Op = — 47r2y24 o b 2 BREIr) + V24l Vs = o +V233/3

W *w 1 ow ow ow+
— &)y (/611 ) + p2uB 5 o ) T30 (a) R W_F (72771 — Vs“/rz)/lTﬁ] dxdy
(23)

By virtue of the fact that Tj is assumed to be uniform, the thermal coupling in Eqgs. (1)—(4) vanishes, but
terms in A7 intervene in Egs. (22) and (23).

Applying Egs. (16)—(23), the postbuckling behavior of perfect and imperfect, shear deformable cross-ply
laminated cylindrical shells subjected to combined axial and thermal loads is determined by a singular
perturbation technique. The essence of this procedure, in the present case, is to assume that

W =w(x,y,6) + W(x, &y e) + W(x, ¢y, e
F=f(x,y.6)+F(x,&ye) +F(x,c,ye)
W, = (x,p,8) + Pu(x, &0, 8) + Po(x,C,p, )
Y, =, (x,pe) + q’y(x, &y e)+ /'I\’y(x,g,y, &)
where ¢ is a small perturbation parameter (see beneath Eq. (20)) and w(x,y,¢), f(x,,¢), wx~(x, v,¢) and

W, (x,,¢) are called outer solutions or regular solutions of the shell, I7V(x, &y, e), f‘(x, Eve), Polx, & y,e),

¥,(x, & p,¢) and ﬁ/(x, G, ), 8), IAT(x, G, ¥, 8), f’x(x, G, ), 8), @y(x, ¢,»,¢) are the boundary layer solutions near
the x = +7/2 edges, respectively, and ¢ and ( are the boundary layer variables, defined by

(24)
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E= (@24 0)Ve = (n/2—x)/VE (25)

(This means for isotropic cylindrical shells the width of the boundary layers is of order v/R7). In Eq. (24) the
regular and boundary layer solutions are taken in the form of perturbation expansions as

xy7 Ze’/w,/zxy fxya Zgl/fl/zxy)

) ) (26a)
lﬁx(xa% é') = Z 8//2(¢x)j/2(x7y)7 lpy(xayv ‘L') = Z gj/z(lpy)j/z(xvy)
j=1 =1
VV(-X7 67}}78) = Zgj/2+1 V~V//2+1(x7€7y)) X é Y, é Zgl/2+2F/2+2 67)})
=0
(26b)
(6, &, p.2) 280” PV jiyp &), Polx, &y, ZS’/M V)26, €, 9)
V/f/(xa Gy 8) = Z 8j/2+1 I;\Vj/ZJrl (X, C,y), ﬁ'(xa SV 8) = Z 8//2+2ﬁ}/2+2(x7 C,y)
=0 =0
! o o (26¢)
75,% Z?0+3 /2 (/+3)/2(xagay)v W}’(xag7ya 8) = Z‘C}//2+2(q’}’)j/2+2(xyg7y)
Jj=0
The initial buckling mode is assumed to have the form
way(x,y) = A(lzl) COS XS COS ny (27)

It should be remembered that, because of the definition of W given in Eq. (13), this means that w,(x,y)
corresponds to w; (X, Y) and the initial local geometric imperfection is represented as a Fourier cosine series
as

W*(x7y7 8) = gzam eXP<_Vc1 |x| - yCZlyD

b
:82#A§21)<L;)+ E a,-cosix) (204— E bjcosjy>
=1 =1

(28a)

where

n/2 2 n
4= / exp(—y¢ix) cosixdx, b= - / exp(—y ) cos jydy (28b)
0 0

and y = a, /A(lzl) is the imperfection parameter.

Substituting Eqs. (24)—(26c) into Eqgs. (16)—(19), and collecting terms of the same order of ¢, three sets of
perturbation equations are obtained for the regular and boundary layer solutions, respectively.

We then use Egs. (27), (28a) and (28b) to solve these perturbation equations of each order, and match
the regular solutions with the boundary layer solutions at each end of the shell, so that the asymptotic
solutions satisfying the clamped boundary conditions are constructed as
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(1 1) (1 7'5/2+x 1) . 7I/2+X n/2+x
W=¢ [AO()) — Al <a01) cos ¢ 7 + ay, sin ¢ 7 exp| —« 7
t/2-x .  m/2—x /2 —x
— Al cos + ay, sin ex — o
00 ( 01 ¢ NG 10 ¢ NG p NG
+¢ [A 1) COS /mx cos ny + A 2 ) cos 2mx + A 0 ) cos 2ny — ( - A%) + A(()Zz) cos Zny)
) n/2+x . T/24x /2 +x ) )
X (agl) cos ¢ NG + a(lo) sin ¢ 7 exp| —a NG - ( - A(zo) + A(()z) cos 2ny)

(2 s )

+¢ [A“) COS mx cos ny + AO2 Ccos 2ny} +eé {A((;é) + A%) cos 2mx + Ag;) cos 2ny

+ A cos mx cos 3ny + A\ cos4ny} +0(&%) (29)
2 2 2
Y p0 A y n/2+x
F= _EB‘(“)) +8{—EBSO)} +82{— 3 Boo +B11 cosmxcosny—i-/l00 (bm cos ¢ 7
., /24X n/2+x /2 /2 —x
+b%)s1n¢ /\/E )exp(oc /\/; >+A&)<bfﬁ)cos¢ /\/_ +b10 n¢ /\/E >
m/2—x Vo6 3 2 2
X €Xp <O€ N ﬂ +83{ 2B(()0) Jrli‘f)z> cos2ny + (—Ago) +A(<)2) cosZny)
2+x 2+ 2+
X (b((fl)cosqﬁ /\/— +b10 Cﬁn/\/; x> exp(—fxn/\/; x> + (—Aé%))JrA(()ZQ)cosZny)

2— 3 . 2— 2—
><(b((fl)cosqﬁn/\/gx+b§‘0)s1nd>n/\/g x>exp(—fxn/\/§ xﬂ

2
+ ¢ { - %ng) + Bﬁ) cos mx cosny + B;‘)) cos 2mx + Bf;;) cos2ny + Bﬁ) COS 11X COS 3ny} +0(&”)

(30)

2 2 2- 2-
lpx:83/2[A80>c(130/2>sin¢uexp(_am>+A00 012 inqu\/gxtEXp(—a”/\/g xﬂ

Ve Ve
. 2
+ ¢ [Cﬁ) s1nmxcosny} + &2 [( — AL + 48 cos 2ny)cY? sin ¢ /\/j—x exp (— an/\/—_{-x)
€

2 - .
+ (—Ag? —i—Af)Zz) cos 2ny)clf)/2> sin ¢ /\/_ al exp ( - ocﬂ/\/_ x)} + & [Ci? smmxcosny]
)

+ ¢ [Cﬁ) sin mx cos ny + Cly) sin 2mx + C\%) sin mx cos 3ny} +0(&’) (31)
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Y, = ¢ [Dﬁ) cos mxc sin ny] +¢ [Dg? cos mx sin ny + DYy sin 2ny

(s (4 cos s s Y (22
n/2-

NE /\/E )p<_/f;)}

+ ¢ [D(l‘i) cos mxsinny + D) sin 2ny 4 D'¥ cos mx sin 3ny} +0(&%) (32)

+d10

— (Aézz)2n[3 sin 2ny) <déf) cos ¢

Note that, all of the coefficients in Egs. (29)—(32) are related and can be written as functions of A(lzl), but
for the sake of brevity the detailed expressions are not shown, whereas « and ¢ are given in detail in
Appendix A.

Next, substituting Egs. (29)—(32) into boundary condition Eq. (21c), and closed condition Eq. (22) and
into Eq. (23), the postbuckling equilibrium paths for initially heated shells can be written as

2, = (1 —%)iﬁ}” _ i;l)(A ) 72 (A§1>8)2 + (Aﬁ)S)S 9 <A§2])8>4 g (33)

cr

8y =0\ + 07 (4 121)8)2+5[(,4)<A(121>8)4+--- (34)

P

in Egs. (33) and (34), (Affs) is taken as the second perturbation parameter relating to the dimensionless
maximum deflection. If the maximum deflection is assumed to be at the point (x,y) = (0,0), from Eq. (29),
one has
A§21)8= Wy — O W+ (35a)
where W,, is the dimensionless form of maximum deflection of the shell, which can be written as
t w
ST ©;
(D}, D5,47,45)]

1

All symbols used in Egs. (33)-(35b) and Egs. (36), (37a) and (37b) below are also described in detail in
Appendix A.

Similarly, substituting Eqgs. (29)—(32) into boundary condition Eq. (21d), and closed condition Eq. (22),
the thermal postbuckling equilibrium paths for initially compressed shells can be written as

P 3 4

Jr = Ci Kl —P—O)A;O) — i (4e) - 2 (4 f,%s) + 0 (4fe) + A0 (afe) + - } (36)

in Eq. (36), ( 121 s) is also taken as the second perturbation parameter in this case, and one has
ADe =W, — 0w + - (37a)

and the dimensionless maximum deflection of the shell is written as

t w
* * * * 1/4 " + @4
[D},D3,47,45,] !

1

Wy = — 37b

Egs. (33)-(37b) can be employed to obtain numerical results for the postbuckling load-shortening or load-
deflection curves of moderately thick laminated cylindrical shells with local geometric imperfections sub-
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jected to combined axial and thermal loads, specially for the two cases of compressive postbuckling of
initially heated laminated shells, and thermal postbuckling of initially compressed laminated shells.
Buckling under pure axial compression and buckling under pure uniform temperature rise follow as two
limiting cases. It is noted that for most moderately thick laminated cylindrical shells the critical value of
temperature rise 7, is very high, and in such a case the thermal buckling due to uniform temperature alone
will not occur. In contrast, when an initial compressive load is applied and kept at a high level, such thermal
buckling can occur. For this reason, in the next section we take Py/P, = 0.7 and 0.8 in the numerical
analysis for thermal buckling problems. From Appendix A, equations for the critical value of compressive
load P, or temperature rise 7, can easily be found. The initial buckling load of a perfect shell can readily be
obtained numerically, by setting W /¢t = 0 (or u = 0), while taking # /¢ = 0 (note that W,, # 0). In all cases,
the minimum buckling load is determined by considering Eq. (33) or (36) for various values of the buckling
mode (m, n), which determine the number of half-waves in the X-direction and of full waves in the Y-
direction. Note that because of Eq. (29), the prebuckling deformation of the shell is nonlinear.

4. Numerical results and comments

Numerical results are presented in this section for moderately thick, antisymmetric or symmetric cross-
ply laminated cylindrical shells with or without local or modal imperfections, where the outmost layer is the
first mentioned orientation. The initial buckling modal imperfection is defined as W*(x,y,¢) =
&?a,, cos mx cos ny, for which the results were obtained numerically in the manner described previously and
detailed further in Shen (2002). Typical results are presented in dimensionless graphical forms in which 4,
and 5; are used for initially heated shells and 7} is used for initially compressed shells. For these examples
(except for Table 1), all plies are of equal thickness and the total thickness of the shell is # = 0.01 m; and the
local imperfection parameters are C;/L = C;/R = 0.02; and material properties are: E;; = 155 GPa,
E22 =8.07 GPa, G12 = G13 =4.55 GPa, G23 =3.25 GPa, Vi = 022, OC]]/OC() = —0.07, OC22/O(0 =30.1 and
9 = 1076/°C. It should be appreciated that in all of these figures W /¢ and W/t mean the dimensionless
forms of, respectively, the maximum initial geometric imperfection and additional deflection of the shell.

The accuracy and effectiveness of the present method for buckling analysis of shear deformable lami-
nated cylindrical shells under axial compression, excluding temperature effects, were examined by many
comparison studies given in Shen (2002), e.g. the buckling loads for (0/90)r antisymmetric laminated cy-
lindrical shells were compared with the first order shear deformation theory (FSDT) results of Iu and Chia
(1988), and for (0/90/0)s and (90/0/90)s symmetric laminated cylindrical shells were compared with the first
order shear deformation theory (FOST) and higher order shear deformation theory (HOST) results of
Anastasiadis et al. (1994), and for single-layer orthotropic cylindrical shells were compared with three-
dimensional solutions of Kardomateas (1995). These comparisons show that the results from present
method are in good agreement with existing results. In addition, the buckling loads for simply supported,
(0/90)r and (0/90/0) cross-ply laminated cylindrical shells under axial compression are calculated and
compared in Table 1 with the results obtained by Khdeir et al. (1989) based on a higher order shear

an:;irisons of buckling loads o, (L/7)*/100E,, for perfect cross-ply laminated cylindrical shells under axial compression
Lay-up Present Khdeir et al. (1989)
HSDT HSDT FSDT CLT
(0/90) 0.1652 0.1687 0.1670 0.1817
(0/90/0) 0.2782 0.2794 0.2813 0.4186

E, = 40E22, GIZ = G13 = 0‘6E22, G23 = 0.5E22, Vig = 025, and L/R = 1, R/l = 10.
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deformation theory (HSDT) along with the first order shear deformation theory (FSDT) and the classical
laminate theory (CLT). The material properties adopted here are Ey;; =40 Ep, G = G;3 = 0.6 Eyp,
Gy = 0.5 E5 and vy, = 0.25. It can be seen that the present results agree well but slightly lower than those
of Khdeir et al. (1989).

Figs. 2 and 3 give, respectively, the compressive postbuckling load-shortening and load-deflection curves
for perfect (W /t = 0) and imperfect (W /t = 0.1), (0/90),r and (0/90)s laminated cylindrical shells under
different values of the initial thermal loading 7, shown. It can be seen that a well-known “‘snap-through”
phenomenon occurs in the postbuckling range. The elastic limit load can be achieved for a small imper-
fection and in such a case imperfection sensitivity can be predicted. It can also be seen that the buckling
loads are reduced with increases in temperature, and the postbuckling path becomes significantly lower.

2 (0/90),,, Z =375 - (0/90),,, Z =375
P R/t =30, (m, n) = (5, 4) P R/t=30, (m,n) = (5, 4)

1 Local

Local

0.6} 06 ~
04} 04l 7l \ -

1:TJT, =0 A

Modal 2:TJT. =025
0.2 W= 02 .
Wih=00 i ——Whi=00

——————— Wit=0.1 W he0d

0.0 L L L L 0.0 1 1 L
0.0 0.2 0.4 0.6 0.8 1.0 0.0 05 1.0 15 20
* —

(a) 8, (b) Wit

Fig. 2. Postbuckling behavior of an initially heated (0/90),r laminated cylindrical shell: (a) load-shortening; (b) load-deflection.

1.0 1.0
2 * (0/90)5’ 7 =375 A * (0/90)5, Z =375 1: TO/Tcr =0
P R/t =30, (m,n)= (3, 4) P R/t=30,0m.m)=(3,4)  2:T/T, =025
08} 08+
1 TyT, =0
2TYT, =025 1
06 Local
2/ -
0.4+ 3
0.2 Modal Wit =00
——————— Wi=0.1
00 1 1 OO 1 1 1 1
0.0 02 0.4 0.6 0.0 0.5 1.0 15 2.0 2.5
. Wit
(a) 3, (b)

Fig. 3. Postbuckling behavior of an initially heated (0/90)s laminated cylindrical shell: (a) load-shortening; (b) load-deflection.
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The results reveal that the postbuckling load for the shell with a local geometric imperfection is greater than
that of the shell with modal imperfection.

Fig. 4 shows curves of imperfection sensitivity for initially heated (0/90),r and (0/90)s laminated cylin-
drical shells with local or modal imperfections. Here, 2" is the maximum value of o, for the imperfect shell,
made dimensionless by dividing by the critical value of o, for the perfect shell. These results show that the
imperfection sensitivity of the (0/90),r shell is weaker than that of (0/90)g shell. The imperfection sensitivity
of shells with local imperfections is weaker than that of shells with modal imperfections. Also the imper-
fection sensitivity of an initial heated shell is slightly great than that of the shell without any initial thermal
stress. Note that the results presented here are only for a small initial geometric imperfection.

Figs. 5-7 are the thermal postbuckling results for initially compressed shells analogous to the com-
pressive postbuckling results of Figs. 2-4, but without load-shortening curves. As argued earlier, in Figs. 5-
7 the initial compressive loads adopted are Py/P.; = 0.7 and 0.8. Fig. 5 shows that if the temperature rise

1.0 1.0
. ~_ Local N Local
0.8 |- T 08F
Modal -
Modal
0.6 | 0.6 F

(0/90),,, Z =375 090),, 7= 375

04F  RA=30,(mn)=(54) 041 Rro30.(mmy=G. 4
ol T WL=0 ool T WWT.=0
' TyT, =025 T /T, =025
0.0 1 1 1 1 0‘0 1 1 n
0.00  0.02 004 006 008 0.10 0.00 0.05 0.10 0.15 0.20
(@) Wit (b) Wit

Fig. 4. Comparisons of imperfection sensitivities of initially heated cylindrical shells under axial compression: (a) (0/90),r; (b) (0/90)s.

2.0

(0/90),,, Z=375
R/t=30, (m, n) = (5, 4)

1: PJP, =07

2:PJP_=08
——Wh=00
o Wt=0.05
00 1 1 1 1
0.0 0.2 0.4 06 _ 08
Wit

Fig. 5. Thermal postbuckling load-deflection curves of an initially compressed (0/90),r laminated cylindrical shell.
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2.0
(0/90),, Z =375

KT* R/t =30, m,n)=(3,4)
1: P/P_=0.7

L5k 2:p/p =08

Local

7777777 Wt=0.05

0.0 0.5 1.0 L5 2.0
Wit

Fig. 6. Thermal postbuckling load-deflection curves of an initially compressed (0/90)s laminated cylindrical shell.

1.0 =
* ;77\77\"\'" TSI Y
08l Modal Local
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0.4+
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0.2+
00 n 1 n 1 n 1 n
0.00 0.01 0.02 0.03 0.04
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Fig. 7. Comparisons of imperfection sensitivities of an initially compressed (0/90)s cylindrical shell under uniform temperature loading.

exceeds a critical buckling level, the thermal postbuckling load-deflection curves of an initially compressed
(0/90),r shell go upward dramatically, and the shell structure is virtually imperfection insensitive. Other-
wise, Figs. 6 and 7 lead to broadly the same conclusions for the (0/90)s laminated cylindrical shell as do
Figs. 3 and 4. Note that in Fig. 7, now 1" is the maximum value of A} for the imperfect shell, made di-
mensionless by dividing by the critical value of A; for the perfect shell.

5. Concluding remarks

In order to assess the effect of local geometric imperfections on the postbuckling behavior of shear
deformable laminated cylindrical shell subjected to combined axial compression and a uniform temperature
rise, a fully nonlinear postbuckling analysis is presented. Two cases of compressive postbuckling of initially
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heated shells and of thermal postbuckling of initially compressed shells are considered. The material
properties are assumed to be independent of the temperature. The boundary layer theory of shell buckling
is extended to the case of shear deformable laminated cylindrical shells, and a singular perturbation
technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical
examples presented relate to the performance of moderately thick, cross-ply laminated cylindrical shells
with local or modal imperfections. The results show that, for the same value of amplitude, the local geo-
metric imperfection has a small effect on the buckling load as well as postbuckling response of the shell than
a modal imperfection does. These results also confirm that for moderately thick laminated cylindrical shells
the thermal buckling due to uniform temperature alone will not occur. In contrast, for large value of initial
compressive loads (e.g. Py/P, = 0.7 and 0.8), such thermal buckling can occur.
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in the above equations (with g;; and g, are defined as in Shen, 2001)
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and
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